

Level IV: Area

The Area of the Polygons: Introduction

The area of the regular decagon

The study of the apothem

Discovering the first digit of the constant: sensorial

Discovering the first decimal digit of the constant: the ratio between the apothem and the side

The triangle solution for the area of the regular polygons

The Area of the Circle

A sensorial identification of the circle as a regular polygon

Measuring the circumference

Establishing the fractional value of the line segment

Calculating the circumference

The area of the circle: calculating the area

The Area of the Parts of the Circle

The sector of the circle

The annulus

The area of the segment of the circle

The Area of the Ellipse What is an ellipse?

Calculating the area of the ellipse

Constructing the ellipse

The Tiling Game: A summary of the area work

A Pythagorean problem

Covering a surface with the other polygons

The relationship of the calculation of the area of the regular polygons and other figures

VOLUME: LEVEL V

Introduction

The Solid and its Transformation at the Level of Area and Equivalence
The Volume of the Parallelopiped: arriving at the formula: the formula
The Materials for the Study of the Volume of other Solids
The Prisms

The volume of the right triangular prism

The volume of the right rhombic parallelopiped

The volume of the regular right hexagonal prism

The Pyramids

The wolume of the right square pyramid

The volume of the regular right triangular pyramid

Solids of Rotation

The volume of the cylinder Formation of the solids

The volume of the cone

The volume of the sphere

GEOMETRY

We begin with a circle which represents the earth because geometry originally meant the measurement of the earth. As a result of man's needs, the analogy grew until it became the study of the form in reality.

Level

 The exploration of forms: to study in a creative personal way and thus to enter the study of geometry. (Children's House)
The Elementary Child

Materials

a) geometry cabinet

- b) constructive triangles: first series
- c) small solids
- d) plane metal insets

Understanding, a knowledge, of the figures in detail. (briefly in the casa) The Elementary School

32. Concepts of congruency, similarity, and equivalence. (congruent is the modern term for equality; equal means it corresponds when superimposed) The most important chapter for the Elementary School. tures of geometry

a) Classified nomencla-

- A. Dynamic aspect:
 a) the square and the triangle insets
 - b) constructive trianbles: second series
- B. Classified nomenclature applied to equivalence.
 - a) the insets of equivalence

4. Area

Elementary

5. Volume

Elementary

6. Relationships

Elementary and Secondary school

THE CONCEPTS BEHIND THIS PLAN

PIRST LEVEL: this is the exploration of forms: natural forms and those created by
man. It is the study of the square and the triangle only as an experience
of recognition and the sensorial. For the child, it is not important
to know the characteristics of the form; but merely that the square is
the square because it has this particular shape.

In this study there is an exploration of the single plane and

In this study there is an exploration of the single plane and the three-dimensional form. Giving the name and form of the three-dimensional figures.

SECOND LEVEL: The knowledge of the figures in detail is an exploration of those same figures in detail: the angles, the sides, and what are they like? Taking what the child knows and moving to to discover the limits, the composition, the special details, all the properties that man has put together on the figures.

THIRD LEVEL: The Golden Level for the Elementary School. It presents the three great concepts of geometry: congruency, similarity and equivalence. The latter of the three is the most important because, once it has been explored and developed, we can work on levels 4, 5, and 6.

There are two chapters: The dynamic aspect and the classified nomenclatures.

GEOMETRY. . . THE PLAN. . .

The term dynamic in geometry indicates something entirely different from that which it indicates in arithmetic. It is the process in which a figure is taken apart and those pieces are reunited inaa new way so that a new figure is formed; one which is equivalent to the first. So that I may say that one triangle is equivalent to a rectangle, having taken the first apart and put the pieces into a new relationship.

The second chapter, the Classified nomenclatures of geometry, combines the repetition of what is done in part A---the dynamic aspect---with the details gained during the Second Level of study; that is, the details discovered in that study of the figures.

The Second Level provides the reasons why the dynamics of part A happen; and this part B, the nomenclature provides a rich synthesis of that combined information.

LEVEL FOUR AND FIVE: Because of the knowledge in Level 3, this study is possible.

Level 5 is the least explored in Montessori study usually because

much of her note material is sophisticated in the area of polyhedrons
and the truncated pyramids and cones.

LEVEL SIX: This is the most sophisticated study; putting into relationship the generalities we have made about each figure. The figures in relation to each other produce the theorems which are here discovered.

NOTE: The constructive triangles are in two sets, each composed of various boxes:

Series 1: 1) rectangular box (colored pieces)

2) rectangular box (blue pieces)

rectangular box (pinwheels)

Series 2: 1) triangular box

2) small hexagonal box

3) large hexagonal box

NOTE: Contrasting the work in the Children's House and the Elementary School:

The criterion for the material used in geometry for the children's house
must be modified for the elementary age. The major part of the curriculum in
casa is the education of the senses: the visual sense is offered particularly
rich material.

When we see an object we perceive 3 elements: <u>dimension</u> (how big or small), <u>shape</u> with its details, and <u>color</u>. Though generally our perception is more global, more general. Montessori arranged visual education in three levels:

for the visual sense of dimension

for the visual sense of shape

for the chromatic sense (perception of color)

We are here interested in the visual sense applied to shapes: to find within the shape the component parts. The shapes within nature (mountains, stones, flowers, leaves) and those shapes created by man and imposed on nature.

Reality is the custodian of forms great and small; tiny ones can be discovered only through the lens. The child knows the shapes of leaves and he knows the shapes created by man: the plate he eats on and the pattern on his floor. But, in his casa work, he has not studied biology or geometry, neither design nor writing. He is only doing a study of shapes and indirectly he is entering many fields. Directly he is educating his visual sense as applied to shape.

The child in the children's house is exploring and ordering shapes. The child in the dementary school is in the process of bringing to consciousness the shapes in their details; and then in the process of exploring the relationship between figures.

DETAILED OUTLINE FOR GEOMETRY

1. Geometry Cabinet

Identification, etymology The commands

2. Constructive Triangles, First Series

Box #1: Forming figures

Box #2: Exploration without guide lines; characteristics

Box #2: Variations

Box #3: The stars and the diaphragns

Box #3: . Variations on the stars

3. CN Fundamental Concepts/Study of Lines

Point, Line, Surface, Solid

Giving the concept

With the decimal materials

Straight and curved line

With the plane insets

With the string

With the sticks

In the environment

Grammar analysis

Positions of a straight Line

Concepts of horizontal, vertical, oblique

On the plane

In the environment

Grammar analysis

Parts of the straight line

Concepts of ray, origin, line segment, end-point

Two straight lines on the same plane

Concepts of parallel, convergent, divergent

3a. CN Perpendicular and Oblique Lines

3b. CN Two Non-parallel Lines Cut by a Transversal

Interior and exterior angles Interior and exterior alternate angles Interior/exterior angles on the same side of the transversal Corresponding angles Examining the different roles one angle can play

Grammar analysis

Bc. CN Two Parallel Straight Lines Cut by a Transversal

Equality of alternate angles

Equality of corresponding angles

Straight. . , angle formed by pair of interior/exterior angles on the same side of the transversal

4. CN The Study of Angles

Concepts of whole, straight, right, acute, obtuse Measuring the angles of the plane insets

Ma. The Measuring of Angles/Use of the Protractor

History of and concept of degree The Montessori protractor

Measuring the insets

Introduction and comparison with the regular protractor The four operations: addition, subtrection, multiplication, bisecting angle Other protractors

4b. CN Relationship Between Two Angles

Two cases of adjacent angles
Vertical angles
Vertical angles are equal
Sensorial proof
Pirst calculation
Complementary and supplementary angles

4c. CN New Definition of Angles

Convex and reflex angles
According to size
According to the prolongation of the sides
The concave polygon
The new definition

- 4d. CN The Equality of Vertical Angles: Second calculation
- 5. CN Pornation of the Regions

Concepts of simple closed curved regions and polygons Forming the polygons with the sticks

6. CN The Systematic Analysis of Triangles

According to the sides
According to the angles
According to sides and angles/the 7 triangles of reality
The hopeless search for an eighth with the sticks
Relationship of the lengths of the sides of jointed triangles: Sensorial
Scalene triangle: Cases of impossibility, limit, possibility
Isosceles triangle: Impossibility, limit, possibility
The unique property of the equilateral triangle

The specific nomenclature of the triangle

The study of altitudes

Identification of interior and exterior altitudes
The altitudes of the 7 triangles with the plane insets
With the fractional insets
Drawing the altitudes
Study of the orthocenter with paper triangles
Researching the other points of concurrency
Specific nomenclature of the right-angled triangle

52. CN Written notation of the relationship of the lengths of the sides of jointed triangles

Scalene triangle: Cases of impossibility, limit, possibility Isosceles triangle: Impossibility, limit, possibility

7. The Concepts and Names of Congruency, Similarity and Equivalence
Introduction of the materials: insets
The concept and name of congruent
The concept and name of similarity
The concept and name of equivalence
Equivalent figures with the insets

7a. Further Study of Similarity and Equivalence

The similarity of rectangles, of squares, of triangles The equivalence of two halves Passages from one equivalent figure to the other

7b. Criteria for the Similarity of Triangles

Constructing similar cardboard figures

8. CN Quadrilaterals

Construction and characteristics of the 6 quadrilaterals of reality

An exercise in sets with the 6 quadrilaterals

The diagonal

Matching labels and plane figures with the constructed quadrilaterals. The nomenclature of the quadrilaterals

Interior and exterior altitudes

The second diagonal

Construction of the four trapezoids

Grammar analysis

9. Constructive Triangles, Second Series

Box T:

Formation of the figures
5 new figures equivalent to the whole
Transitive property of equivalence
Relationship between lines: Between the whole and other figures
Among the other figures

Box Hi:

Forming the figures
Equivalence according to fractional value
Relationship between lines: 2 modes
Relationship of hexagon to equilateral triangle
Inscribed triangle; circumscribed hexagon
Relationship of lines: hexagon with triangle and rhombus

Box H2:

Formation of the figures
Fractional relationship between trapezoid and rhombus
Relationship of lines: hexagon/trapezoid, hexagon/rhombus,
rhombus/trapezoid

Equivalence between To and the trapezoid

The ratio between T1 and T2

Proof #1: Trapezoid as mediator

Froof #2: Rhombi (composed of 2/3 and 2/4) as mediators

Proof #3: With the deltoid as mediator

Union of the three boxes

The difference between T₁ and T₂

The ratio between the hexagons

The difference between H₁ and H₂

Arithmetical calculation

H₁ - H₂ = rhombus

Frame cut from H₁ - H₂

Sensorial proof with metal insets

The Pythagorean Theorem

Equivalence between the rhombi Two proofs of the ratio 3:4

With the equilateral and obtuse-angled isosceles triangl With the green trapezoid

Ratio of the equilateral triangle inscribed in another equilatera Ratio of the triangle inscribed in the hexagon

Equilateral triangle built on the altitude of another equilateral Ratio of the two hexagons

The inscribed square

The Pythagorean theorem

The Pythagorean theorem applied to other figures: sensorial

x. Mathematical motation of the Pythagorean theorem applied to other figures.

16. Regular and Irregular Polygons: Sensovial exploration

With the plane insets Drawing the figures

10a. From the Irregular to the Regular Folygons: Second Level ..

Constructing the figures Precise identification with labels
My Regular rolygons: redefinition
Nomenclature of the square and the triangle Construction of the polygons with straws:

11! - Sum of Interior and Exterior Angles

Interior angles of the polygons

Triangle; quadrilateral, polygons: First level)

Quadrilateral, polygon: Second level.

Polygon: Third level!

Exterior angles of the polygon

Identification of the exterior angles: ...

With the sticks

With the plane insets:

Sum of the exterior angles of the triangle.

Sam of the exterior angles of the quadrilaterais

Variations with the diaphragua.

Measuring the listerior and exterior angles of the polygons-

12. The Circle

Nomenelature of the circle and litte properties

Redefinition of the segment and the sector

Mationship between the position of the straight line and the circles:

External!

Tangent.

Secont

Melaticonship of the position of two circumferences: Level II

External

Internal.

Externally tangent

Internally tangent.

Securit circles

Concentric circles

12a- Relationship Between the Straight Line/Circle and Two Camples: Level III

The six cases of the relationship of the position of two circumferences:

13. The Insets of Equivalence

montesseri Leo	metry
Dreschool	I nomenclature: figures of plane and solid geometry
	II Equivalence, area, volume:
Frist elementary year	I Momenclature: equivalence, lines, angles
Scond elementary year	Malefinition of plane figures
	III Measuring angles III of triangles of reality
	M'Concepts: tongruence, similarity, equivalence.
Third elementary year	M Definition of D 5 and quadrilaterals.
	I area
	M Concepts: conquence, similarity
	M Concepts: congruence, similarity
11 Introduction	
Mmastery	

THE PLAN AND THE CONCEPTS BEHIND THE PLAN

THE EXPLORATION OF FIGURES: LEVEL I

A Description of the Geometry Cabinet The Geometry Cabinet: A Casa Presentation The Geometry Cabinet: For the Elementary

The Constructive Triangles: First Series, Box #1
The Constructive Triangles: First Series, Box #2

The Geometry Commands

The Constructive Triangles: First Series: Variations with Box #2
The Constructive Triangles: First Series: Box #3

Presentation: Let's Construct the Stars Presentation: Let's Construct the Diaphragms

Variations

THE KNOWLEDGE OF THE FIGURES IN DETAIL: LEVEL II

The Classified Nomenclature: A Description of the Material

A Sample Presentation

The Box of Sticks: A Description of the Material

The Study of the Geometry Nomenclature

Basic Ideas

Presentation #1: Concepts of point, line, surface, solid.

Presentation #2: Using the classified nomenclature

Presentation #3: The four concepts with the decimal materials

The Study of LinesPres

Presentation #1: Discovery with the plane insets: curved and straight lines

Presentation #2: The pure concept

A Game: The search in the environment

The Positions of a Straight Line The Parts of a Straight Line

Parallel, Convergent and Divergent Lines

Perpendicular and Oblique Lines

Two Straight Lines Cut By a Transversal

Case A: When the straight lines are not parallel

Case B: When the straight lines are parallel

The Study of Angles: Whole Straight, Right, Acute, Obtuse

Angles: Adjacent, vertical, complementary and supplementary angles

Presentation #1: First Case of Adjacent Angles Presentation #2: Another Case of Adjacent Angles

Presentation #3: Vertical Angles

Presentation #4: Vertical Angles are Equal Angles

Presentation #4a: Vertical angles are equal: abstract proofs

Presentation #5: Complementary and Supplementary Angles

Measuring Angles

Presentation #1: The Concept of degree and the Montessori protractor

Presentation #2: Introducing the regular protractor

The Operations with the Protractor

Addition, Subtraction, Multiplication

Division of an Angle: bisecting the angle

Presentation #3: Other Protractors

Convex and Reflex Angles

Presentation #1: Defining the angles Presentation #2: The concave polygon

A New Definition of the Angle

The Formation of the Regions

The Study of Polygons: Regions Limited by Broken Lines

The Triangle: The First Polygon

Part I: The Study of the Triangle according to the sides Part II: The Study of the Triangle according to the angles

Part III: The Study of the Triangle According to the Sides and the angles

The Equilateral Triangle

The Construction of the Triangles

The Scalene construction: sensorial and advanced level The Isosceles construction: sensorial and advanced level The Specific Nomenclature of the Triangle

Altitudes: Drawing the altitudes

The orthocenter

Research for the three points of concurrency

Specific Nomenclature of the right-angled triangle

Exploration of the Quadrilaterals

Presentation #1: The Six Quadrilaterals of Reality

Presentation #2: The diagonal

Presentation #3: The nomenclature of the quadrilaterals

Presentation #4: The trapezoid

The printed form for the analysis of the sum of interior angles of a polygon.

On the Regularity and Irregularity of Polygons

Presentation: Regular and Irregular relygons

Presentation: From the irregular to the regular polygons: Second level

Presentation: Nomenclature of the square and the triangle

Concluding activity: Let's Construct the Polygons

The Circle

Nomenclature of the circle and its parts

A Game: the redefinition of the sector and the segment

Relationship between the position of the straight line and the circle

First level: without the radius

Second level: with the radius and the calculation

Relationship of the rositions of two circles

First level: without the radius

Second level: with the radius and the calculation

The Concept of Infinity

The Sum of the Angles of a Polygon

Presentation: The Sum of the Interior Angles of the Triangle

Presentation: The Sum of the Interior Angles of the Quadrilateral Level 1 and 2

Presentation: The Sum of the Interior Angles of the Polygons with more than 4 Sides: Levels 1, 2, 3

The Sum of the Exterior Angles of a Polygon

Presentation #1: Identifying the exterior angles

Presentation #2: The Sum of the Exterior Angles of a rolygon Presentation #3: The Same Experience with the Quadrilaterals

Exercise: Measuring the exterior and interior angles on the insets

THE COLDEN CHAPTER OF GEOMETRY FOR THE ELEMENTARY SCHOOL: LEVEL III: CONGRUENCE, SIMILARITY AND BOUIVALENCE

Introduction

Presentation: An Introduction to the Materials

First Level: The concepts and the names

Part I: The Concept and the Name of Congruent

Part II: The Concept and the Name of Similarity

Part III: The Concept and the Name of Equivalence

Exercises

Second Level: The Further study of Similarity and Equivalence

Part I: The Concept of Similarity: a further study

Third level: the criteria for the similarity of triangles

Part II: The Further Study of Equivalence

The Constructive Triangles: Second Series

T1 (Box #1)

Constructing the figures

Equivalence between one figure and many other figures

The transitive property of equivalence

The relationship between lines: in two modes

H1 (Box #2)

Formation of the figures

Relationship of the lines

Relationship between two figures of different fractional value

The equivalence between one figure and the sum of more than one figure equal

among themselves Relationship of lines between the inscribed triangle and the circumscribed hexagon

TABLE OF CONTENTS. . Level III: Congruence, Similarity and Equivalence. . . H₂ (Box #3) Formation of the figures Relationship of the fractional value among figures which do not have the same fractional value Equivalence between the yellow equilateral triangle (T2) and the trapezoid The ratio between the yellow triangle (T_2) and the grey triangle (T_1) A second proof of the ratio Third proof of the ratio The Union of the Three Boxes $T_1 - T_2$ The Difference between H1 and H2: arithmetical The sensorial difference between H1 and H2 A Study of the Relationship between T1 and T2 The equivalence between the two red rhombi Two proofs of the ratio 3:4 Using the green trapezoid to make the proof The ratio between figures: between the equilateral triangle inscribed in another equilateral triangle The ratio between figures: triangle inscribed in the hexagon The ratio between figures: the equilateral triangle built on the altitude of another equilateral triangle The ratio between figures: the inscribed square The Pythagorean Theorem Extensions of the Pythagorean Theorem The sensorial construction The mathematical notation The Insets of Equivalence Introduction to the materials Presentation #1: The triangle is equivalent to the rectangle. . . Presentation #2: The rhombus is equivalent to the rectangle. . . Presentation #3: The equivalence of the common parallelogram and the rectangle Presentation #4: The equivalence of a trapezoid and a rectangle. . .with #10 Presentation #5: The equivalence between a regular polygon and a rectangle. . Part I: The regular pentagon Part II: The division of the regular decagon Presentation #6: All triangles having the same base and altitude are equivalent Researches and exercises The Pythagorean Theorem Introduction Presentation #1: The sensorial proof with frame #18 Presentation #2: The numerical proof with frame #19 Exercise: the triples. . . Presentation #3: The Euclidean Theorem with frame #20 Presentation #3a: The relationship of lines of the equivalent quadrilaterals Presentation #4: Algebraic proof

AREA: LEVEL IV

The Four Rectangles: How to measure a surface Constructing the formula Inverse properties The Area of the Parallelogram The Area of the Triangle: Introduction Area of the acute-angled triangle Area of the right-angled triangle Area of the obtuse-angled triangle The Area of the Square The Area of the Rhombus

. . . with the paper construction

. . . with the insets of equivalence

The Area of the Trapezoid